20 research outputs found

    An evolutionary variable neighbourhood search for the unrelated parallel machine scheduling problem

    Get PDF
    This article addresses a challenging industrial problem known as the unrelated parallel machine scheduling problem (UPMSP) with sequence-dependent setup times. In UPMSP, we have a set of machines and a group of jobs. The goal is to find the optimal way to schedule jobs for execution by one of the several available machines. UPMSP has been classified as an NP-hard optimisation problem and, thus, cannot be solved by exact methods. Meta-heuristic algorithms are commonly used to find sub-optimal solutions. However, large-scale UPMSP instances pose a significant challenge to meta-heuristic algorithms. To effectively solve a large-scale UPMSP, this article introduces a two-stage evolutionary variable neighbourhood search (EVNS) methodology. The proposed EVNS integrates a variable neighbourhood search algorithm and an evolutionary descent framework in an adaptive manner. The proposed evolutionary framework is employed in the first stage. It uses a mix of crossover and mutation operators to generate diverse solutions. In the second stage, we propose an adaptive variable neighbourhood search to exploit the area around the solutions generated in the first stage. A dynamic strategy is developed to determine the switching time between these two stages. To guide the search towards promising areas, a diversity-based fitness function is proposed to explore different locations in the search landscape. We demonstrate the competitiveness of the proposed EVNS by presenting the computational results and comparisons on the 1640 UPMSP benchmark instances, which have been commonly used in the literature. The experiment results show that our EVNS obtains better results than the compared algorithms on several UPMSP instances

    An adaptive multi-population artificial bee colony algorithm for dynamic optimisation problems

    Get PDF
    Recently, interest in solving real-world problems that change over the time, so called dynamic optimisation problems (DOPs), has grown due to their practical applications. A DOP requires an optimisation algorithm that can dynamically adapt to changes and several methodologies have been integrated with population-based algorithms to address these problems. Multi-population algorithms have been widely used, but it is hard to determine the number of populations to be used for a given problem. This paper proposes an adaptive multi-population artificial bee colony (ABC) algorithm for DOPs. ABC is a simple, yet efficient, nature inspired algorithm for addressing numerical optimisation, which has been successfully used for tackling other optimisation problems. The proposed ABC algorithm has the following features. Firstly it uses multi-populations to cope with dynamic changes, and a clearing scheme to maintain the diversity and enhance the exploration process. Secondly, the number of sub-populations changes over time, to adapt to changes in the search space. The moving peaks benchmark DOP is used to verify the performance of the proposed ABC. Experimental results show that the proposed ABC is superior to the ABC on all tested instances. Compared to state of the art methodologies, our proposed ABC algorithm produces very good results

    Cooperative evolutionary heterogeneous simulated annealing algorithm for google machine reassignment problem

    No full text
    This paper investigates the Google machine reassignment problem (GMRP). GMRP is a real world optimisation problem which is to maximise the usage of cloud machines. Since GMRP is computationally challenging problem and exact methods are only advisable for small instances, meta-heuristic algorithms have been used to address medium and large instances. This paper proposes a cooperative evolutionary heterogeneous simulated annealing (CHSA) algorithm for GMRP. The proposed algorithm consists of several components devised to generate high quality solutions. Firstly, a population of solutions is used to effectively explore the solution space. Secondly, CHSA uses a pool of heterogeneous simulated annealing algorithms in which each one starts from a different initial solution and has its own configuration. Thirdly, a cooperative mechanism is designed to allow parallel searches to share their best solutions. Finally, a restart strategy based on mutation operators is proposed to improve the search performance and diversification. The evaluation on 30 diverse real-world instances shows that the proposed CHSA performs better compared to cooperative homogeneous SA and heterogeneous SA with no cooperation. In addition, CHSA outperformed the current state-of-the-art algorithms, providing new best solutions for eleven instances. The analysis on algorithm behaviour clearly shows the benefits of the cooperative heterogeneous approach on search performance

    Population-based iterated local search approach for dynamic vehicle routing problems

    No full text

    Electromagnetic algorithm for tuning the structure and parameters of neural networks

    No full text
    Electromagnetic algorithm is a population based meta-heuristic which imitates the attraction and repulsion of sample points. In this paper, we propose an electromagnetic algorithm to simultaneously tune the structure and parameter of the feed forward neural network. Each solution in the electromagnetic algorithm contains both the design structure and the parameters values of the neural network. This solution later will be used by the neural network to represents its configuration. The classification accuracy returned by the neural network represents the quality of the solution. The performance of the proposed method is verified by using the well-known classification benchmarks and compared against the latest methodologies in the literature. Empirical results demonstrate that the proposed algorithm is able to obtain competitive results, when compared to the best-known results in the literature

    Evolutionary learning based iterated local search for Google machine reassignment problems

    No full text
    Iterated Local Search (ILS) is a simple yet powerful optimisation method that iteratively invokes a local search procedure with renewed starting points by perturbation. Due to the complexity of search landscape, different ILS strategies may better suit different problem instances or different search stages. To address this issue, this work proposes a new ILS framework which selects the most suited components of ILS based on evolutionary meta-learning. It has three additional components other than ILS: meta-feature extraction, meta-learning and classification. The meta-feature and meta-learning steps are to generate a multi-class classifier by training on a set of existing problem instances. The generated classifier then selects the most suitable ILS setting when performing on new instances. The classifier is generated by Genetic Programming. The effectiveness of the proposed ILS framework is demonstrated on the Google Machine Reassignment Problem. Experimental results show that the proposed framework is highly competitive compared to 10 state-of-the-art methods reported in the literature
    corecore